AUSPROOF 25kV

800 AMP Coupler and Adaptor Test Report

	Developed by	Philip Marks
Theory 1.9.4	DIN	RD_1057
	Version	3
A EL SION T	<i>L1</i> /00/2021	

Test Report

DATE ISSUED:	18 January 2024
DEVICE TESTED:	AusProof 25 kV 800 A Coupler
RANGE NUMBERS:	25BU, 25BUFO, 25KA, 25KAFO, 25KAMT, 25KAMTE, 25KAE, 25KAFO
CLIENT'S NAME:	AusProof Pty Ltd 6 Shona Avenue Gladstone Queensland 4680 Australia
CLIENT'S REFERENCE:	Email: Clinton Taylor
TEST SPECIFICATION:	Client specification including references to AS/NZS 1300, AS/NZS 1299, C22.2 No 298, IEEE 386 and IEEE 404
DATE OF TEST COMPLETION:	22 November 2022
SUMMARY OF RESULTS:	The sample device tested complied with the requirements of the above test specification.
All tests reported	Approved Signatory: K Mans

K Manson

Checked By:

G I Dix

International Accreditation New Zealand (IANZ) has a Mutual Recognition Arrangement (MRA) with the National Association of Testing Authorities (NATA), Australia, such that both organizations recognize accreditations by IANZ and NATA as being equivalent. Users of inspection reports / certificates are recommended to accept inspection reports / certificates in the name of either accrediting body.

PowerLab Limited, PO Box 31034 Christchurch 8444 New Zealand, 5 Sheffield Crescent Christchurch New Zealand, Info@powerlab.co.nz. This Report must not be quoted except in full.

have been performed in accordance with the Laboratory's scope of accreditation, Accreditation Number: 42

TESTING LABO

Testing notes

The following personnel were present during testing:

Laboratory staff: K Manson and G I Dix

Tests Performed

Test	Test	Standard/Clause	Test value
number			
1	Phase to phase + earth AC 50	AS/NZS 1299	52 kV for 1 minute
	Hz 1 minute	AS/NZS 1300	
		C22.2 No. 298	
		IEEE 386	
2	Phase to phase + earth AC 50	AS/NZS 1299	40 kV for 4 hours
	Hz 4 hours	AS/NZS 1300	
3	Pilot to earth 50 Hz	AS/NZS 1300	1000 V for 1
		AS/NZS 1299	minute
4	Impulse	AS/NZS 1300	125 kV and
		AS/NZS 1299	150 kV
		AS/NZS 2802	
		C22.2 No. 298	
		IEEE 386	
5	Partial Discharge	AS/NZS 1300	Inception and
		AS/NZS 1299	extinction 10%
		C22.2 No. 298	greater than 14.44
			kV, Max 100 pC
6	Ingress protection	AS 60529	IP68
7	Short circuit test (phase)	AS/NZS 1300	20 kA for 1.0 s
		AS/NZS 1299	
		C22.2 No. 298	
8	Bonding (earth) path current test	C22.2 No. 298	5.01 kA for 9 s
9	Temperature rise	ASNZS1300	800 A
		ASNZS1299	
		C22.2 No. 298	

Test Laboratory Atmospheric Conditions

Temperature 12 $(\pm 5)^{\circ}$ C. Pressure 100 (± 5) kPa (Approximate height above local sea level is 30 m).

Laboratory Equipment

Ferranti inverted Marx impulse generator configured with 3 stages rated at 100 kV, 0.24 μ F per stage;

Laboratory manufactured adjustable transfer, tail and front resistors;

Page 2 of 28 Pages 18 January 2024

Laboratory manufactured impulse generator control and firing equipment; Haefely 600 kV peak capacitor voltage divider/chopping gap; Haefely 64M Impulse Peak Voltmeter: Manually set 25cm sphere-gap; Biddle balanced partial discharge detector 665700 (Zm, PDS) Biddle partial discharge system master calibrator 6617250 Oscilloscope Heafely 2000 pF discharge free 200 kV capacitor (Ck). Hipotronics 150 kV 150 kVA ac dielectric test set Resistive voltage divider and true RMS indicator (Hipotronics KVM300) Fluke 287 DVM Tektronix TDS3034 Four Channel digitizing oscilloscope; 11 kV/440 V short circuit transformer 20.000/5 CT Laboratory constructed point on wave switch Inductors and Resistors Laboratory manufactured current viewing resistor; and Miscellaneous laboratory equipment including: assman hydrometer, barometer, and a mercury-in-glass thermometer. Agilent 34970A data acquisition system

Measurement Uncertainties

Refer to the Laboratory accreditation details at <u>www.ianz.govt.nz</u> for information on measurement uncertainty.

Coupler test connection, terminations and fittings

The sample coupler assemblies tested were terminated with Client supplied cables, potting compound and fittings

Although these are required for testing, they are not considered to be part of the sample device tested.

Test procedures, Results

1. AC Voltage withstand test (phase conductors)

The specified test voltage was applied between the specified conductors and the coupler body using a Hipotronics 150 kV 150 kVA ac dielectric test set operated from the laboratory mains supply. The voltage was measured using a resistive voltage divider and true RMS indicator (Hipotronics KVM300). A stopwatch was used to monitor time of application.

52 kV rms was applied between the conductors and the coupler body for a period of 1 minute.

During the high voltage test no disruptive discharges, - flashovers or insulation punctures were noted.

The insulation resistance was greater than 1 G Ω , each phase to earth.

Result:

Complies

2. AC Voltage withstand test (phase conductors)

The specified test voltage was applied between the specified conductors and the coupler body using a Hipotronics 150 kV 150 kVA ac dielectric test set operated from the laboratory mains supply. The voltage was measured using a resistive voltage divider and true RMS indicator (Hipotronics KVM300). A stopwatch was used to monitor time of application.

40 kV rms was applied between the conductors and the coupler body for a period of 4 hours.

During the high voltage test no disruptive discharges, - flashovers or insulation punctures were noted.

The insulation resistance was greater than 1 G Ω , each phase to earth.

Result:

Complies

3. AC Voltage withstand test (pilot conductors)

The specified test voltage was applied between the specified conductors and the coupler body using a Hipotronics 150 kV 150 kVA ac dielectric test set operated from the laboratory mains supply. The voltage was measured using a resistive voltage divider and true RMS indicator (Hipotronics KVM300). A stopwatch was used to monitor time of application.

1 kV rms was applied between the pilot conductor and the coupler body for a period of 1 minute.

During the high voltage test no disruptive discharges, - flashovers or insulation punctures were noted.

Result:

Complies

4. Impulse test

A Ferranti impulse generator with a Haefley voltage divider and peak voltmeter was used. The wave shape was adjusted by means of interchangeable front and tail resistors to be within the allowed tolerances.

Ten impulses of each polarity were applied as specified in the Standard. Each impulse was monitored by digital comparison with a stored reference.

The applied impulse was monitored using a Tektronix digitising oscilloscope.

Wave shape was 1.0/44 μ s. Refer to Figure 1.

The test voltage was 125 kV peak.

The test was then repeated with a test voltage of 150 kV peak

During the application the 125 kV impulses no disruptive discharges, flashovers or insulation punctures were noted.

Result (125 kV):

During the application the 150 kV impulses no disruptive discharges, flashovers or insulation punctures were noted. Refer to Figure 1.

Result (150 kV):

Complies

Complies

5. Partial discharge test

The specified test voltage was applied between the conductors and the coupler body using a Hipotronics 150 kV 150 kVA ac dielectric test set operated from the laboratory

mains supply. The voltage was measured using a resistive voltage divider and true RMS indicator (Hipotronics KVM300).

Discharge levels were measured using a Biddle balanced bridge discharge detector. The bridge was balanced according to the bridge manufacturer's instructions. The measurements system was calibrated by injecting a known discharge between the conductor and the cable sheath. The system calibration was checked at 10 pC and at 100 pC. Background discharge levels were recorded. Discharge levels were measured using an oscilloscope and the bridge meter.

Background discharge level was less than 1 pC

	Voltage (kV)	Discharge Level
Inception	17.1	500 pC after inception
Extinction	16.2	< 2 pC after extinction

Result:

Complies

6. Ingress Protection

Two sample couplers were assessed according to AS 60529 to determine compliance with IP 68.

CI 13.3	Ingress of Solid Objects Test (AS 60529)			Р	
Ingress Test Performed	Location of probe applied	Force applied (N)	Clearance measured	Verdict	
	Unit 1				
IP1X	Enclosure Ends, Cable Rubber Entry, Bungs, Cover Cap.	50	No entry/damage	Р	
IP2X	Enclosure Ends, Cable Rubber Entry, Bungs, 30 No Cover Cap. 30 entry/damage				
IP3X	Enclosure Ends, Cable Rubber Entry, Bungs, Cover Cap.	Rubber Entry, Bungs,3No entry/damage			
IP4X	Enclosure Ends, Cable Rubber Entry, Bungs, Cover Cap.	1	No entry/damage	Р	
	Unit 2				
IP1X	Enclosure Ends, Cable Rubber Entry, Bungs.	50	No entry/damage	Р	
IP2X	Enclosure Ends, Cable Rubber Entry, Bungs. 30 No entry/damage		Р		
IP3X	Enclosure Ends, Cable Rubber Entry, Bungs.	3	No entry/damage	Р	
IP4X	Enclosure Ends, Cable Rubber Entry, Bungs.	1	No entry/damage	Р	

CI 13.6	Ingre	ngress of Dust Test (AS 60529)								
EUT identification		Degree of protection (Dust)	Duration of test (hr)	Ambient temperature (°C)	EUT ambient (°C)	Verdict				
Unit 1		IP6X	6.1	15.1	24.4	Р				
Unit 2		IP6X	6.1	15.0	20.9	Р				

CI 14.3	Ingre	ngress of Water Test (AS 60529)									
EUT identification		Degree of protection (Water)	Depth of EUT from surface (m)	Duration of test (min)	Ambient temperature (°C)	Water Ambient temperature (°C)	Verdict				
Unit 1		IPX8	1.1	60.0	15.0	17.4	Р				
Unit 2		IPX8	1.1	60.0	15.4	16.4	Р				

Result

Complies

7. Short-circuit (though-fault) test

The device was subjected to the test currents by use of a step down three phase transformer and inductors from an 11 kV supply and a phase controlled on switch and time controlled off circuit breaker:

Test 20 kA 0.2 s

Results: 0.234 s, 19.8 kA, n=2.0 (power factor = 0.3), 50 Hz, mean of 3 tests applied with 10 minutes between. Refer to Figure 2.

Test 20 kA 1.0 s

Results: 1.03 s, 19.7 kA, n=2.0 (power factor = 0.3), 50 Hz. Refer to Figure 3.

After current applications, there were no visible disturbance, pitting or burning.

Result

Complies

8. Bonding (earth) path current test

The earth continuity circuit was subjected to the following current waveform by use of a step down transformer and inductors from an 11kV supply and a phase controlled on switch and time controlled off circuit breaker:

Test 5.01 kA for 9 s

Results: 9.08 s, 5.13 kA, n=2.0, 50 Hz. Refer to Figure 4.

The earth continuity was measured on test completion.

After the current application the measured continuity was 0.0006 Ω .

Result

Complies

9. Temperature rise

All conductors were connected in series and thermocouples were placed as required by Clause 3.3.8.4 of ASNZS 1300.

Thermocouple locations included:

- (a) Main contact adjacent to connecting device (1)
- (b) Main contact adjacent to cable conductor (2)
- (c) Cable conductor 1 m from cable gland

				[]
Thermoco location 1				Thermocouple location 2
		Coupler A	Coupler B	
Location	Coupler	Thermocouple location	Phase ID	
А	Α	1	White	
В	А	2	White	
С	А	1	Blue	
D	А	2	Blue	
E F	А	1	Red	
F	А	2	Red	
G	В	1	Blue	
Н	В	2	Blue	
1	В	1	Red	
J	В	2	Red	
K	В	1	White	
L	В	2	White	

A current of 800A was passed through the test object until the temperature variation did not exceed 2 K/h.

Location	Α	В	С	D	E	F	G	Н	I	J	K	L
Rise	34	39	40	36	34	38	41	40	37	38	38	35
Difference from cable	-2	3	4	0	-2	2	5	4	1	2	2	-1

(Values are degrees Kelvin)

Result

Complies

Oscillograms

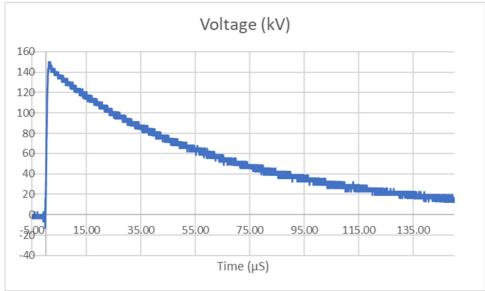


Figure 1. Last 150 kV impulse

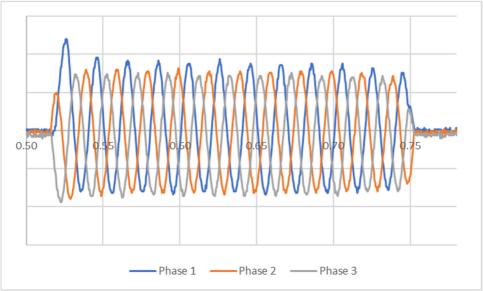


Figure 2. 20 kA for 0.2 s short circuit test number 3

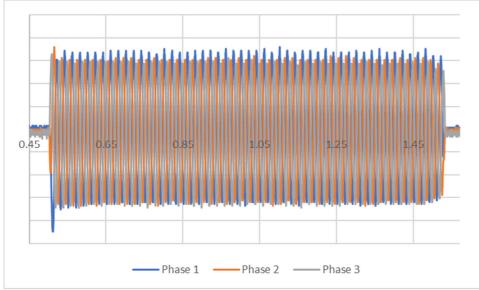


Figure 3. 20 kA for 1 s short circuit test

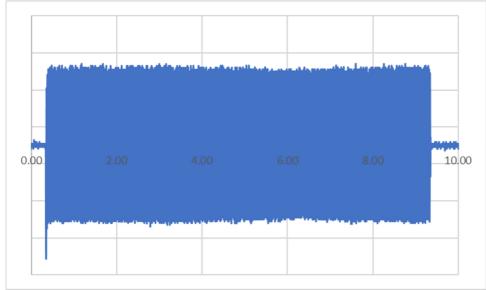


Figure 4. 5 kA for 9 s short circuit test

Pictures:

Picture 1 General view of coupler

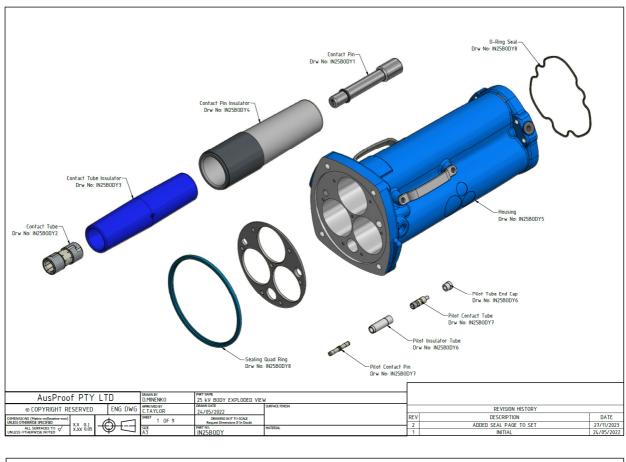
Picture 2 Coupler in dust test

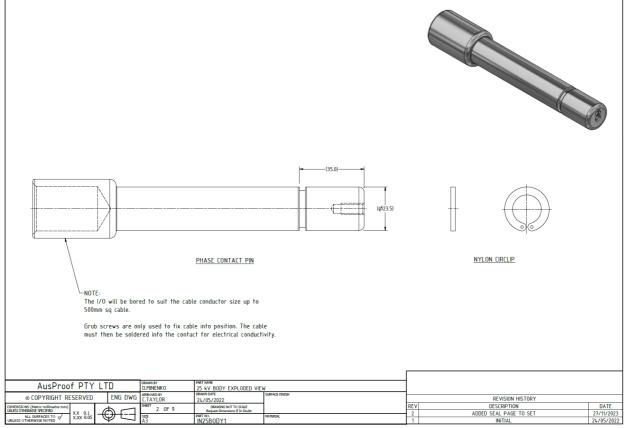
Picture 3 Coupler in 1 m water

Picture 4 Contacts after short circuit test

Picture 5 Contacts after short circuit test

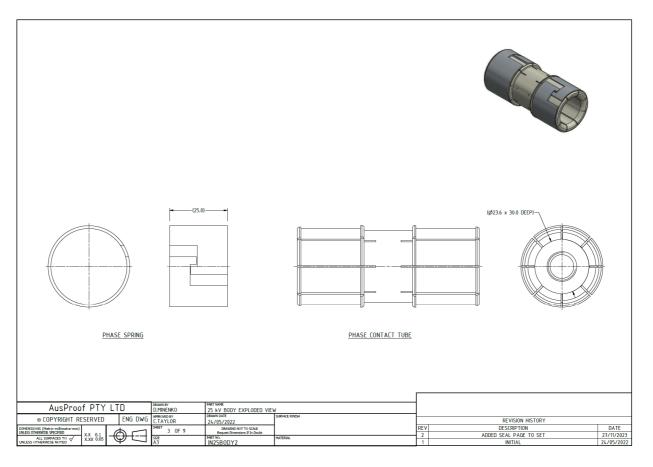
Page 14 of 28 Pages 18 January 2024

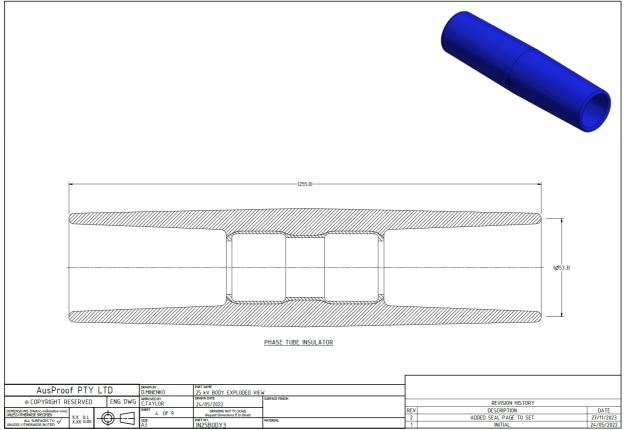



Drawings:

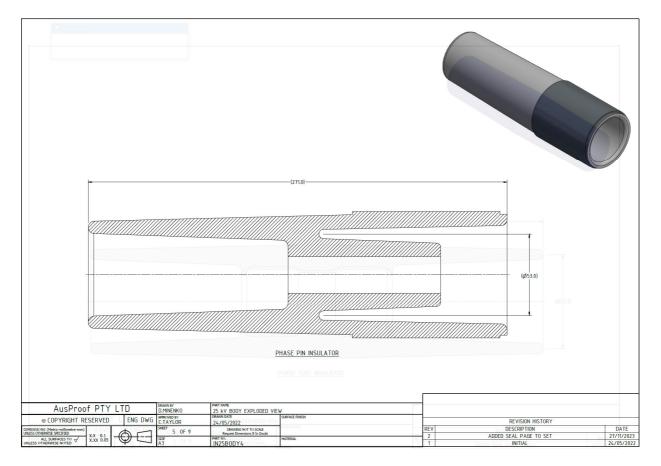
List of drawings:

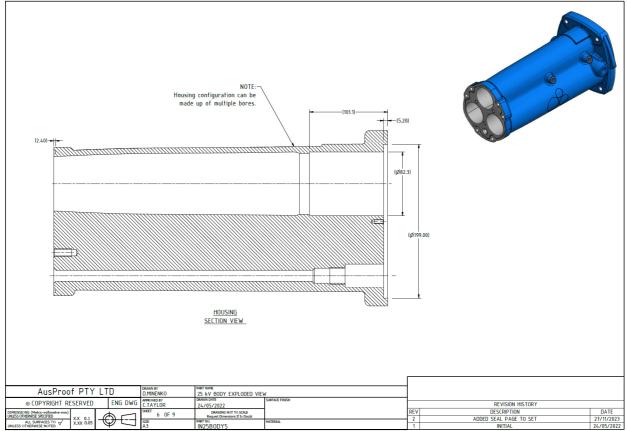
No	Drawing No.	Title	Revision	Date
1	IN25BODY	Cable coupler & components	2	27/11/2023
2	IN25BODY1	Phase contact pin	2	27/11/2023
3	IN25BODY2	Phase contact tube	2	27/11/2023
4	IN25BODY3	Phase Tube insulator	2	27/11/2023
5	IN25BODY4	Phase Pin insulator	2	27/11/2023
6	IN25BODY5	Housing	2	27/11/2023
7	IN25BODY6	Pilot Insulator tube	2	27/11/2023
8	IN25BODY7	Pilot Pin/Tube	2	27/11/2023
9	IN25BODY8	Sealing quad ring/O-ring seal	2	27/11/2023
10	IN25COVER	End covers & components	1	27/11/2023
11	IN25COVER1	Cast pro cover	1	27/11/2023
12	IN25COVER2	Insulated end cover	1	27/11/2023
13	IN25COVER3	Universal End Cover Cast Box	1	27/11/2023
14	IN25COVER4	Sealing quad ring/O-Ring Seal	1	27/11/2023
15	IN25COVER5	End cover plug	1	27/11/2023
16	IN25GLANDKA	KA Glands & components	1	27/11/2023
17	IN25GLANDKA1	KA Small/KA Large	1	27/11/2023
18	IN25GLANDKA2	KA OCS Comp ring/KA OCL Comp ring	1	27/11/2023
19	IN25GLANDKA3	KA OCS Pressure ring/KA OCL Pressure ring	1	27/11/2023
20	IN25GLANDKA4	Filler bung/O-ring	1	27/11/2023
21	IN25GLANDKAN	KAN Glands & components	1	27/11/2023
22	IN25GLANDKAN1	KAN Small Housing/KAN Large Housing	1	27/11/2023
23	IN25GLANDKAN2	KAN Small Comp washer/KAN Large Comp washer	1	27/11/2023
24	IN25GLANDKAN3	KAN OCS Comp ring/KAN OCL Comp ring	1	27/11/2023
25	IN25GLANDKAN4	KAN Small ss comp ring/KAN Large ss comp ring	1	27/11/2023
26	IN25GLANDKAN5	Filler bung/O-ring	1	27/11/2023

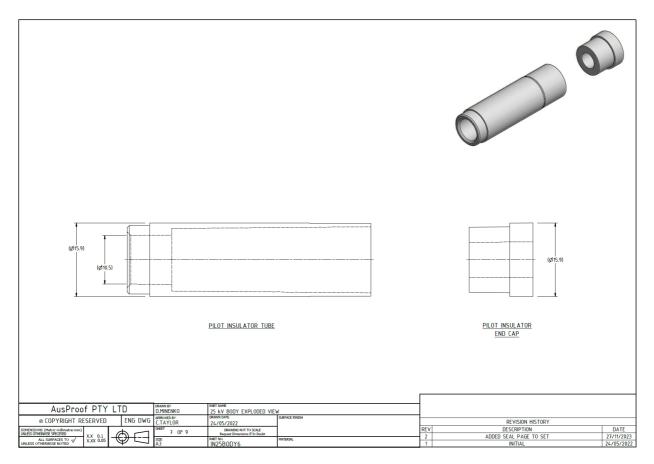


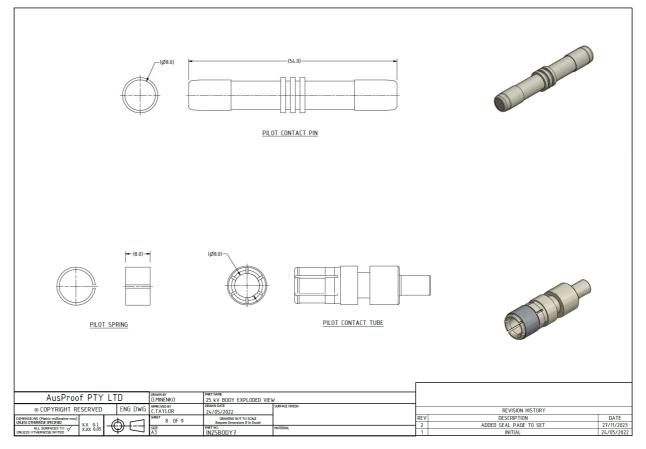


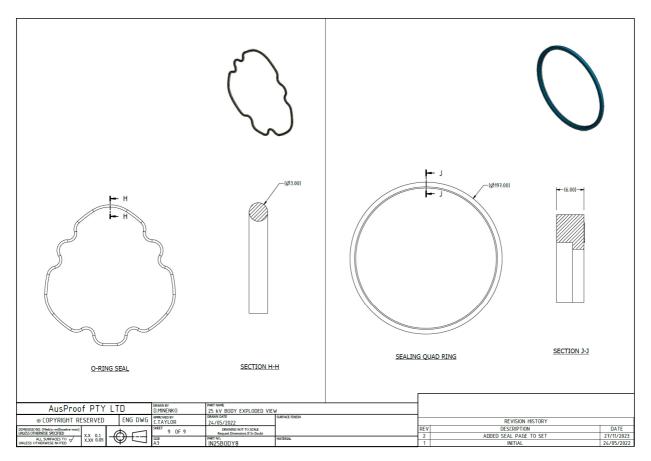
Page 16 of 28 Pages 18 January 2024

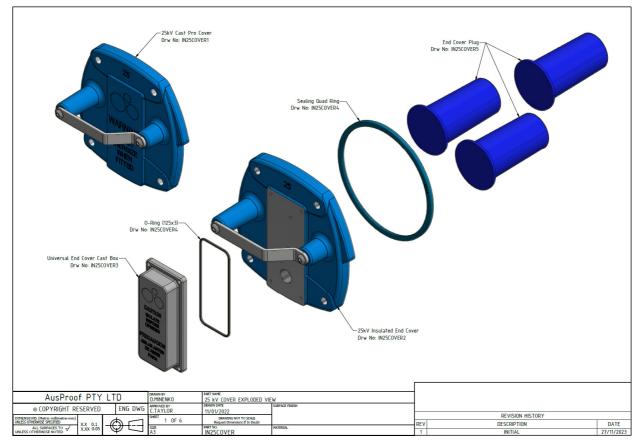




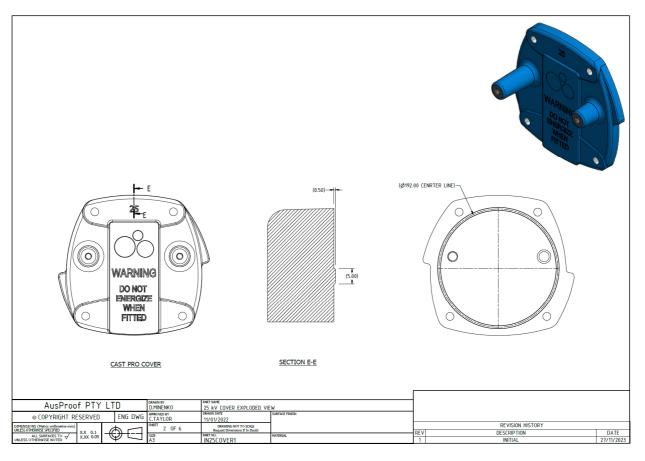

Page 17 of 28 Pages 18 January 2024

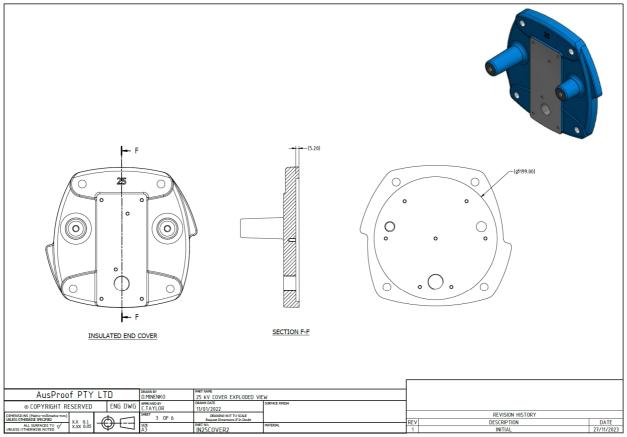




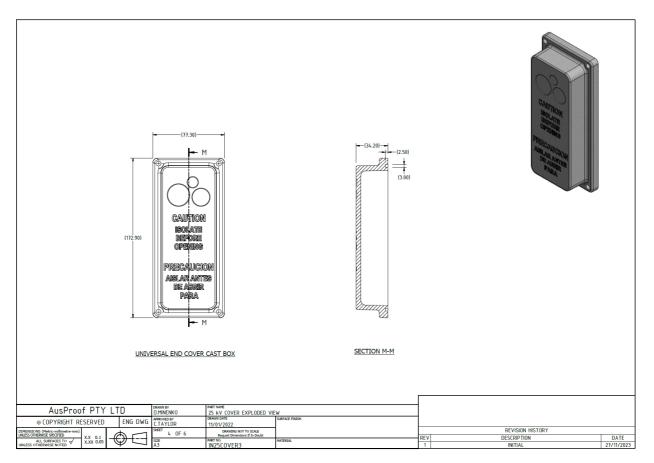


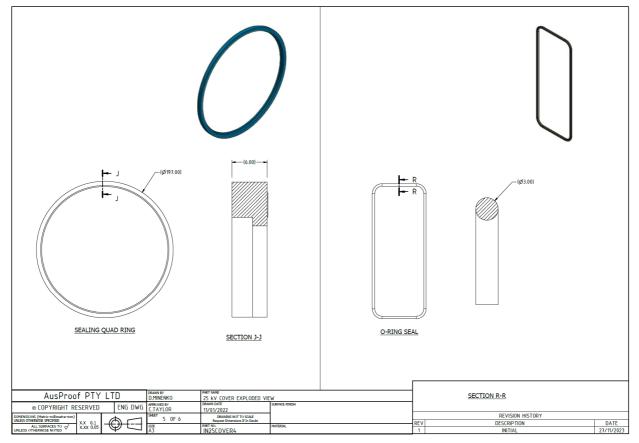
Page 19 of 28 Pages 18 January 2024



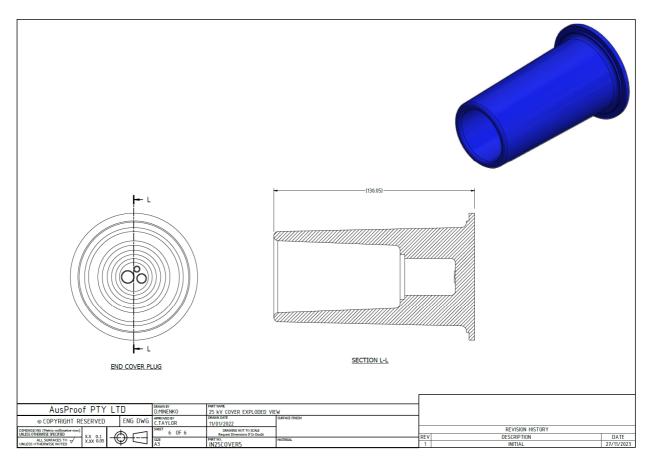


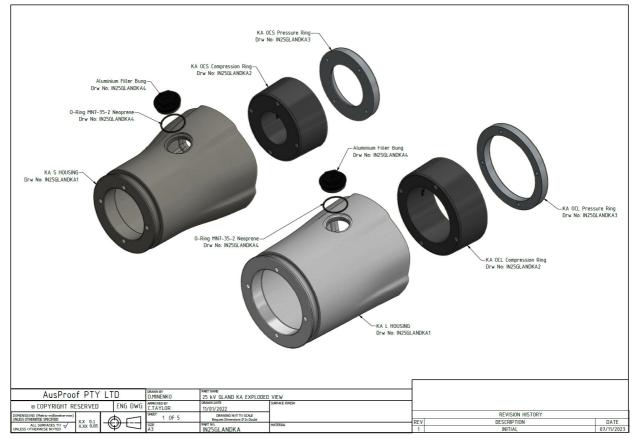
Page 20 of 28 Pages 18 January 2024

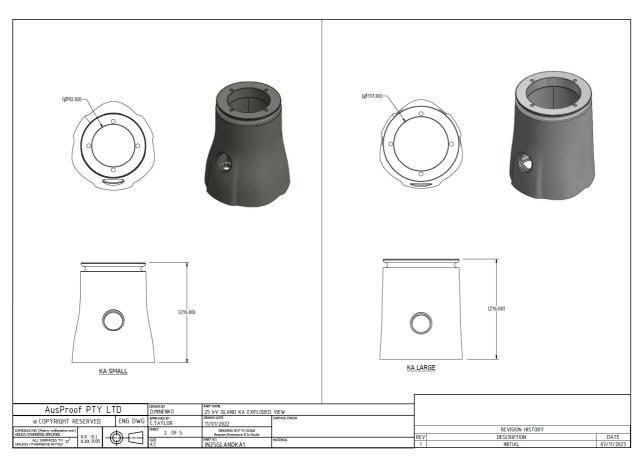


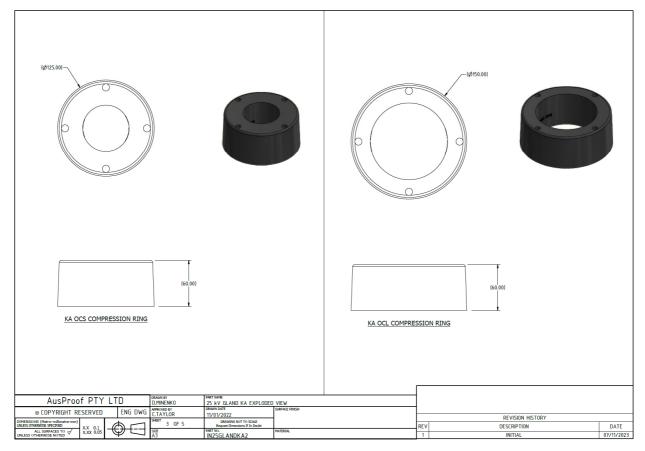


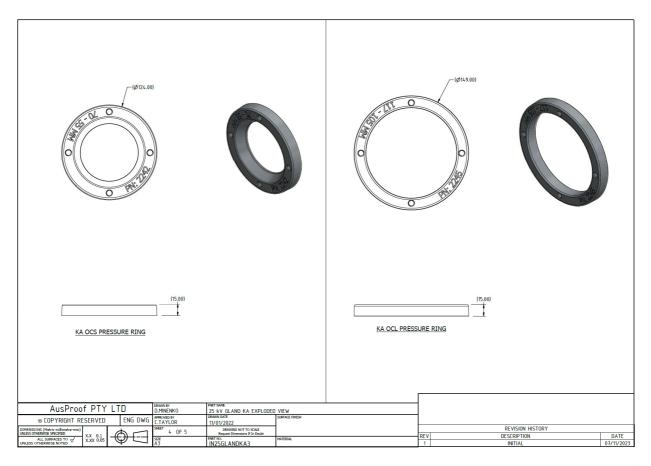
Page 21 of 28 Pages 18 January 2024

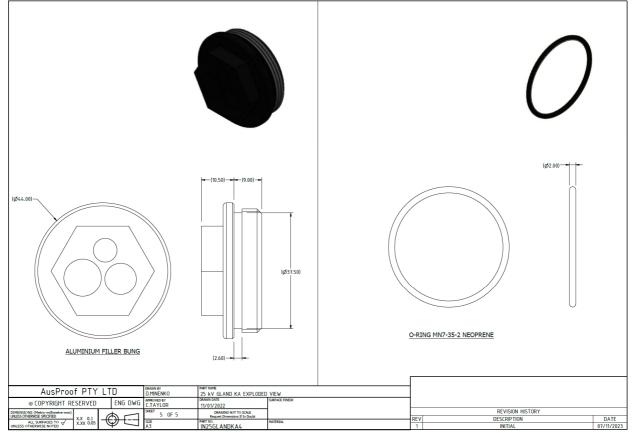




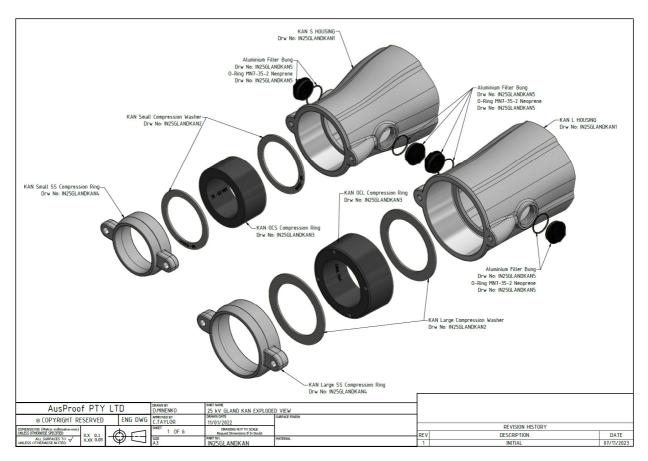

Page 22 of 28 Pages 18 January 2024

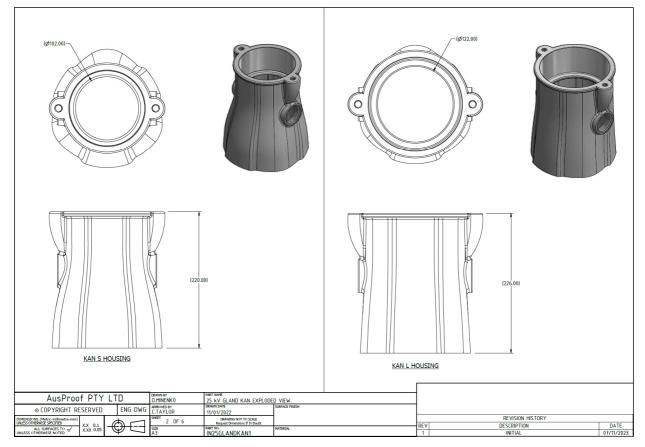




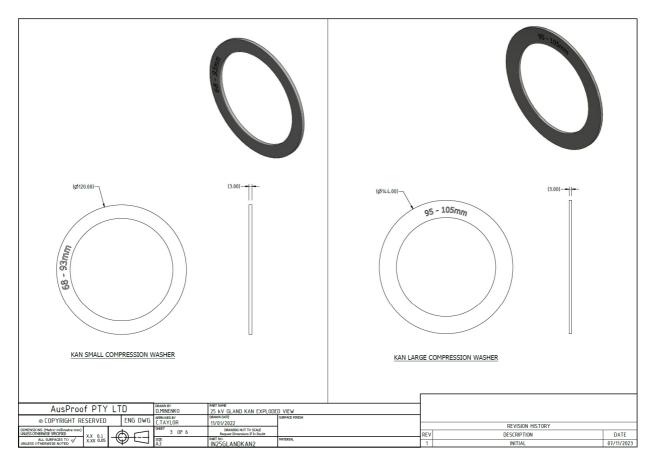


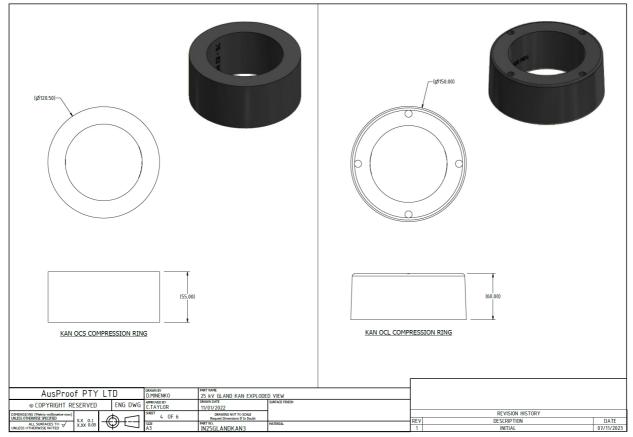
Page 24 of 28 Pages 18 January 2024



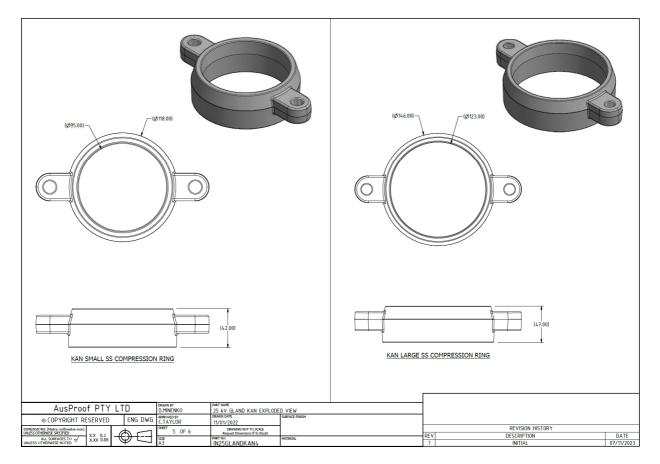


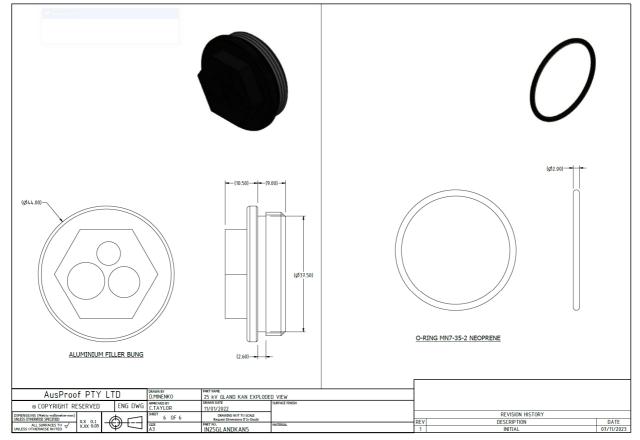
Page 25 of 28 Pages 18 January 2024





Page 26 of 28 Pages 18 January 2024





Page 27 of 28 Pages 18 January 2024

